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There has been much attention given to controlling biological systems with pulses, but there has been
less attention given to studying the physics of these systems and how the control interacts with the phys-
ics. In this work, a set of four circuits intended to simulate the physics of neurons (based on a modified
version of the FitzHugh-Nagumo equations) is coupled by pulses, producing a high dimensional system.
Numerical simulations and experiments are used to study simple, pulse-based control schemes for this
system. A pulse control scheme that requires less knowledge of the system than an Ott-Grebogi-Yorke
control scheme is used, and its efficiency is compared to that of periodic pacing and demand pacing.

PACS number(s): 05.45.+b, 87.10.+e¢

I. INTRODUCTION

There have recently been suggestions that control tech-
niques based on reconstructing return maps from com-
plex time series in biological systems might be useful for
controlling abnormal rhythms present in those systems
[1,2]. Typically, a series of interlike intervals from a
heartbeat or nerve signal is used to construct a first re-
turn map. Suspected unstable period one orbits are then
located by means of an algorithm that searches for stable
and unstable directions in the return map. This informa-
tion is used to determine when to stimulate the system
with a control pulse in order to produce the desired (usu-
ally periodic) dynamics.

In most work, these techniques have been used on bio-
logical systems for which the dynamics are not known or
on low dimensional noisy systems [3,4]. There has been
some work on applying control techniques to oscillator
networks [5]. There is some controversy over whether or
not it is possible to reliably find unstable period one or-
bits from experimental data in higher dimensional sys-
tems using two-dimensional (2D) return maps and on
how the control techniques really work, or if they are
really new to biology.

In an attempt to understand some of the physics
behind these control techniques, this paper reports on
studies of a complex circuit model that contains some of
the same physics as a group of coupled neurons. Rings of
coupled oscillators are believed to be useful for under-
standing more complex neural networks [6], so a ring
configuration of circuits is used. An unstable period 1 or-
bit is located in the numerical model for the full 12-
dimensional flow and from a 2D map-based technique.
The map-based technique is also used to find an unstable
period 1 orbit in data from the circuit. A simple control
technique is then demonstrated on a 2D system and ap-
plied to the 12D numerical model and to the circuit.
This technique is then compared to existing control tech-
niques for biological systems.

Sepulchre and Babloyantz [S] have used the Ott-
Grebogi-Yorke (OGY) control technique [7] in a high di-
mensional network of coupled oscillators and shown that
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higher dimensional control is possible. In this paper the
OGY technique is not used. The OGY control technique
works well when the locations and slopes of the stable
and unstable manifolds of an unstable orbit are known,
but in experimental data from biological systems it may
not always be possible to find this information. It is
therefore useful to know how well a control technique
that requires less information may perform. A simple
pulse technique is studied in this paper, and its efficiency
is compared to periodic pacing and demand pacing con-
trols.

II. CIRCUIT MODEL

Actual neurons are quite complicated. For many
years, simple approximate models of neurons have been
used to understand their basic function [8,9]. It has been
shown in many cases that simple models can adequately
reproduce some of the basic physics behind the firing of
neurons [10-12]. The goal of this work is not to model a
specific biological system but to understand the physics
behind a control scheme that has been used with different
biological systems, so a simple model that reproduces the
basic physics should be adequate.

The circuit model used here is based on the FitzHugh-
Nagumo equations [8,9], which are often used as a sim-
ple model of a neuron. The equations were modified to
make coupling them easier and to make them easier to
build as circuits. The equations, as used here, are
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No delay term was included, although for delays that are
small compared to the memory time constant (0.023383)
the effect on the dynamics should not be large. The time
constant 8 was 10° for the circuit but was set equal to 1
for the numerical simulations. These equations are
driven by the variable w(¢), which is a square pulse with
an amplitude A, although a constant voltage may be sub-
stituted to make the system self-oscillatory. The driving
signal is a simple approximation to driving signals be-
lieved to be present in groups of motor neurons [13,14].
The driving period was T. The x signal from oscillator j
was multiplied by the coupling constant a;; before being
added into oscillator i. In all the examples in this paper,
the coupling constants were a;;=+a for j <i, —a for
j>i, and O for j=i. The oscillators were coupled in
aring, so a4 was +a and a,; was —a.

The function g,(x) (Fig. 1) was a piecewise linear ver-
sion of the cubic function in the FitzHugh-Nagumo equa-
tions, while g,(x) discharged the memory when the x
variable exceeded a threshold of 1.4 V. A relative refrac-
tory period was provided by g;(x), which initializes the

g4(x) (V)

x (arb. units)
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FIG. 1. Graph of function g,(x) from Eq. (5). This plot was
generated numerically.
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memory with a large negative constant after a firing. The
function g4(x) prevents spurious effects caused when the
z variable becomes too negative.

In most cases when the FitzHugh-Nagumo (FHN)
equations are used to simulate a single neuron, only two
equations are used, with a time factor that differs by a
factor of 1000 [15,16]. In this version of the FHN equa-
tions, the slow variable is provided by Eq. (3), which acts
as a damped integrator that provides some memory of
pulses from other circuits. The time scale of Eq. (3) was
made as long as practical within the dynamic range limi-
tations of the analog circuit. The driving signal w(¢) is
an analog of driving signals that are suspected to drive
motor neurons [13].

III. FINDING PERIOD 1 ORBITS

A. Numerical results

To control an unstable periodic orbit, one must know
where it is. Equations (1)—(8) were used with a fourth or-
der Runge-Kutta integrator to see if algorithms used to
detect unstable period 1 orbits could work with this sys-
tem [1-4]. The time constant 8 was set equal to 1.0,
while the driving period T was 16.0, the amplitude 4 was
5.0, and the coupling constant @ was 3.0. The x variable
for each oscillator was essentially a string of pulses, so
the oscillators were pulse-coupled. Figure 2 shows the x
variable from each of the four circuits. An interval time
series was produced by recording the times at which x,
exceeded a threshold of 1.4 V. Figure 3 is a first return
map plotting the n + 1th interval I, . ; against the nth in-
terval I, for about 600 data points (the time step used to
generate the interval data was 0.04 s). This return map is
reminiscent of those seen for interspike interval data
from the heart [1]. The largest Lyapunov exponent for
Eqgs. (1)-(8) with these parameters was calculated [17],
and it was found that the system was chaotic, with a larg-

est exponent of 0.014 s~!. This small number may be

o
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FIG. 2. Time series of the four x variables from numerical
simulations of Egs. (1)-(8). From bottom to top, the signals are
X1, X3, X3, and x4. An offset has been added to the top three
signals for clarity.
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FIG. 3. Return map created by plotting interspike intervals
I, from the x, signal from numerical simulations of Egs.
(1)-(8).

slightly misleading, as the coupled oscillators only in-
teract when they fire, while the Lyapunov exponent is
averaged over the entire trajectory.

A simple algorithm for detecting unstable period 1 or-
bits, based on those used in [1-4], was chosen to locate
unstable period 1 orbits in these data. This algorithm is
defined in the Appendix. The algorithm indicated that
there was an unstable period 1 flip saddle with a period of
approximately 105 s, a stable eigenvalue of approximately
—0.1, and an unstable eigenvalue of approximately —4.
The same algorithm was used with a randomly shuffled
version of the same time series. The same fixed points
were also located in the shuffled data; how to define and
use algorithms for finding unstable periodic orbits from
interval data is currently being debated [3,4,18], so there
may be better algorithms than the one used here.

It was uncertain if the period 1 detection algorithm,
which was based on a 2D map, could give accurate re-
sults in a system that could be as high as 12 dimensional.
A time series of all 12 variables of flow data was generat-
ed using the same parameters as above, with a close ap-
proach algorithm [19] to find unstable periodic orbits. A
time series of 200 000 points with an integrator time step
of 0.2 s was used. An unstable period 1 orbit was found
with a period of 103 s. The Lyapunov exponents for this
orbit were calculated from Egqs. (1)-(8), using the
method of Eckmann and Ruelle [17]. The largest ex-
ponent was 0.005 s~ !, while all others were negative.
The fact that this orbit had only one unstable direction
makes it highly likely that it could be stabilized by a sin-
gle control signal [5,7]. The magnitude of this exponent
was not compared directly to the unstable eigenvalue
determined from the interval map because there is no
simple way to transform from the time series representa-
tion to the interval map.
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As a check on the detection algorithm, a second set of
time series was generated for a self-oscillatory
configuration. In this case, the driving signal w(¢) was
set equal to a constant of 1.2. The sample coupling
configuration was used with a coupling constant a of 8.0.
The resulting 2D return map was very complex, with no
obvious structure (it resembled return maps generated
from electrical signals from the brain [2]). The period 1
detection algorithm based on the interval return map in-
dicated a period 1 flip saddle with a period of 29 s, but
the method of close approaches used with the full flow
did not find any fixed points. It is possible that the period
1 orbit was too unstable to be detected with the close ap-
proach method, as this configuration was found to have
two positive Lyapunov exponents. There are other
methods for finding periodic orbits numerically [20], but
they require a good estimate for the location of the orbit
and would be very cumbersome of this system.

B. Experimental results

The same map-based period 1 detection algorithm was
used with data from four actual FHN circuits, coupled in
the manner described above. The time constant S for the
circuit was 10° s, while the driving period T was 1.144
ms, the amplitude 4 was 14.0, and the coupling constant
a was 8.0. Figure 4 shows time series of the x variables
of all four circuits; from bottom to top, the signals are x,,
X,, X3, and x,. Figure § is the interval return map from
the circuit.

A false nearest neighbor algorithm [21] was used to
find the embedding dimension of a time series of 100 000
intervals from the circuit. In this type of algorithm, a
data point is defined as a near neighbor in phase space if
it is within some distance € of a reference point. When
the embedding dimension is increased, the distance be-
tween the data point and the reference point will increase
because of the added dimension, but it may increase more
than can be accounted for by the dimension increase.
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FIG. 4. Time series of the four x signals from a coupled cir-
cuit array based on Egs. (1)-(8). From bottom to top, the sig-
nals are x,, x,, X3, and x4. An offset has been added to the top
three signals for clarity.



5820

25

20 |

I, (ms)

0 S 10 15 20 25

I, (ms)

FIG. 5. Return map created by plotting interspike intervals
I, from the x; signal from a coupled circuit array based on Egs.
(1)-(8).

Such a data point is a false nearest neighbor. When the
data embedding dimension is increased to the point
where it exceeds the attractor embedding dimension, the
fraction of data points that are false nearest neighbors
should fall off sharply. Such a fall off was not seen for
the time series of 100000 intervals from the circuit for
data embedding dimensions as high as 14, so it could not
be distinguished from noise. The false nearest neighbor
technique should work with higher dimensional data, and
it should be possible to analyze interval data in this way
[22]. It may be that the intervals were long enough, com-
pared to the largest Lyapunov exponent for the system,
that using interval data undersamples the dynamics. Be-
cause no reliable embedding dimension estimate was
available, no Lyapunov exponent calculation was at-
tempted.

The 2D map-based algorithm for period 1 detection
found possible period 1 flip saddles with periods of about
7.8, 5.9, and 6.8 ms. The method of close returns was not
used to find fixed points because a 12 channel digitizer
with sufficient speed was not available.

IV. CONTROL

A. Numerical results

Once the unstable period 1 orbits have been detected, it
may be possible to stabilize them. In [1], once an unsta-
ble fixed point is found from the interval return map, the
stable and unstable manifolds of this point are also found.
One may then predict that if the system approaches the
fixed point along its stable manifold, it will then move
away from the fixed point along its unstable manifold.
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This predictability allows intervention in the system
through a control pulse that forces the system back onto
the stable manifold of the fixed point when it starts to
move away. In [1], the application of this algorithm ac-
tually produced a period 3 orbit, not the desired period 1.
This algorithm was also applied in [2], but there are sug-
gestions that in some cases this type of pulsed control
amounted to what is known as demand pacing, where the
system is forced to fire if it goes longer than some fixed
time without firing [4,23].

Sepulchre and Babloyantz [5] demonstrated OGY con-
trol in a high dimensional oscillator network, but their
work was numerical, so they had all of the necessary in-
formation to implement the OGY algorithm. It is possi-
ble that the 2D map method for finding fixed points and
manifolds could be extended to higher dimensions, but it
is likely that the amount of data required to give depend-
able results would rise quickly. In biological systems,
there is usually not time to take a long time series. As a
result, the aim here is to first try a very crude control
technique that does not need too much information.

To find a control method for the circuit array used
here, it was necessary to test the predictability of the in-
terval data. Stable and unstable manifolds for the unsta-
ble fixed points were estimated from interval return maps
generated by Eqgs. (1)-(8) (Fig. 3) or the corresponding
circuit (Fig. 5). Attempts were made to use these calcu-
lated manifolds to predict the motion of the system near
the fixed point; when the system approached the fixed
point along the stable manifold, the unstable manifold
was used to predict the next interval. It was possible in
most cases to predict that a point on one side of the line
of identity would be followed by a point on the other side,
but it was not possible to predict how far from the line
this point would be, so it is likely that the calculated
manifolds were not good approximations to the real man-
ifolds. While the numerically generated unstable period 1
orbit from Egs. (1)-(8) did have only one unstable direc-
tion, this direction occupied a space of as many as 12 di-
mensions. The interval map calculation gives the projec-
tion of this manifold into two dimensions, so much infor-
mation is lost.

A very simple control algorithm was designed that re-
lied on the fact that if the point on the interval map I, _,
I, was on one side of the line of identity, the point
I,,I, ., would usually be on the other side. If the inter-
val I, _ | between successive firings was less than the fixed
point I, but greater than some minimum value I,;,, a
small pulse was added to the driving signal w (¢) after os-
cillator 1 finished firing. This pulse by itself was not
enough to cause any of the oscillators to fire, but since
the oscillators did retain some memory of the driving in-
puts, it could cause the next interval I, to be shorter than
it would have been. The amplitude of this pulse was pro-
portional to the difference I, —1, ;. For convenience,
this control will be called subthreshold pulse feedback
(STPF) control.

The way that this STPF control algorithm works may
be shown for numerical simulation of a single uncoupled
FHN oscillator with a drive period T of 16 s and a driv-
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FIG. 6. Interval return map created from interspike intervals
I, from the x variable from a numerical simulation of a single
driven uncoupled FitzHugh-Nagumo system.

ing amplitude A4 of 14.0. An interval return map for this
system is shown in Fig. 6. The output from this system
looks like a one-dimensional map and crosses the line of
identity with a slope of —3.0 at a fixed point value of
1,=34.02 s. Adding a control pulse to shorten the next
firing interval should change the slope of this map. Add-
ing a pulse with a fixed height of 0.1 when the system is
near the fixed point shortened the next interval by 0.25 s.
For control, the height of the added pulse was
y(Iy—I,_,) when I, _, was between 33.6 and 34.02 s.
To make the slope of the unstable manifold less negative
than —1.0, ¥ must be at least 0.8. Figure 7 shows an en-
largement of the map in Fig. 6 when the control has been
activated with ¥ =0.7; a portion of the unstable manifold
has been tilted so that its slope is only slightly more nega-
tive than —1.0. For y =0.8, the slope of this portion of
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FIG. 7. Blowup of the map of Fig. 5 when STPF control has
been activated with a feedback constant ¥ of 0.7, just under that
needed to control the system.
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FIG. 8. Time series showing interspike intervals I, for a nu-
merical simulation of Egs. (1)-(8) when a STPF control algo-
rithm has been activated. The control algorithm was activated
at n =0, causing a short transient followed by a controlled
period 1 orbit with a period of 102 s.

the manifold becomes less negative than — 1, and after a
very short transient the system reaches a stable period 1
orbit. This control technique is similar to the map-based
technique of Petrov, Peng, and Showalter [24].

This same STPF control technique was also applied to
the full coupled system of Egs. (1)—(8) by adding the con-
trol pulse to the driving signal w(¢) for all four oscilla-
tors. Because the return map was more than two-
dimensional, it was not possible to calibrate the effect of a
fixed pulse on the interval timing; thus a constant ¥ was
chosen by trial and error. When a control window be-
tween 100 and 107 s was used with ¥ =0.25, the system
stabilized to fixed point of 102.3 s (Fig. 3), near the actual
fixed point of 102.3 s. The fact that the upper end of the
control window is above the fixed point is still consistent
with this type of control; all that is required is that the
unstable manifold be rotated to cross the identity line
with a slope less negative than —1.0. If the upper end of
the control window is above the fixed point, the con-
trolled point will be below the fixed point.

To judge if the STPF control algorithm might be able
to create period 1 orbits far from the fixed point, the
same control technique was used for windows extending
between 85 and 90 s or 180 to 185 s. No control was seen
in either of these cases.

The control did not work when the control pulse was
applied to only a single oscillator; it is probable that there
are various spatial modes that exist for this coupled sys-
tem, and controlling these modes may require control at
more than one point. Control of spatially extended sys-
tems is a topic of ongoing research [25].

B. Experimental control

An analog “controller circuit was built to see if this
STPF control method would work in a high dimensional
circuit. The control circuit charged a capacitor to keep
track of the time since the last firing of one of the oscilla-
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tors. When the x signal from oscillator 1 exceeded 1.4 V,
the voltage ¥, on the capacitor was sampled by a sample
and hold amplifier, after which the capacitor voltage was
reset to 0. When this sampled voltage V; was within a
2.0 V window below the control voltage ¥V, the control
circuit produced a pulse S, with an amplitude of
y(V,—V;) (where ¥y was 8.3) and a width of 0.1 ms. This
pulse by itself was much smaller than the drive pulses
w(t); a typical comparison of the power delivered by
drive and control pulses is given below. The control volt-
age V, was varied until a controlled period 1 orbit was
seen. When the driving period T was 1.144 ms, the am-
plitude 4 was 14.0 V, and the coupling constant a was
8.0, it was possible to control a fixed point at 6.88 ms.

Figure 9 shows the controlled period 1 orbit, which fol-
lows a transient as the controller was turned on. This
controlled orbit appears to correspond to one of the or-
bits detected by a period 1 detection algorithm, but as
discussed in the caption it may be a new orbit created by
the control. Figure 10 shows the x signal from each of
the four FHN circuits, the control signal S,, and the
driving pulses when the circuits are in the controlled
period 1 orbit. For comparison to other control methods,
the average power delivered to the FHN circuit array by
the control circuit was calculated to be 5.6 mW, while the
drive signal here delivered 41 mW. Some of the power
delivered by the control signal was lost because the con-
trol pulse began while the circuits were still discharging
[g2(x) in Eq. (6) was still 10.0], so the circuits were not
sensitive to the entire control pulse. This could be
corrected by increasing the delay between the circuit
firing and the control pulse.

Because the control algorithm here changes the unsta-
ble manifold by rotating it downward, it is possible for
the manifold to cross the line of identity below the origi-
nal fixed point, creating a new fixed point. This effect
was probably seen when the four circuits were driven
with a period T of 3.185 ms, an amplitude A4 of 14.0, and

I, (ms)

T T T T T T T
0 200 400 600 800 1000 1200 1400
n

FIG. 9. Time series showing interspike intervals I, for the x,
signal from an array of coupled circuits based on Egs. (1)-(8)
when an analog STPF controller has been activated. The con-
troller was activated at n =0, causing a short transient followed
by a controlled period 1 orbit with a period of 6.88 ms.
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FIG. 10. Time series from a controlled array of coupled cir-
cuits based on Egs. (1)-(8) when a STPF controller has been ac-
tivated. The lowest trace shows the driving signal w(?); the
next trace up shows the STPF control signal S.; and the top
four traces show x;, x,, X3, and x4, in that order. The top three
signals have been offset for clarity. The control signal is
nonzero because the system is not on the fixed point for the un-
perturbed system. It is possible to bend the unstable manifold
so that it crosses the line of identity below the original fixed
point, creating a new stable fixed point (this has been seen in the
single-oscillator simulations). The controlled fixed point is at
6.88 ms, which is below one of the detected unstable fixed points
at 7.8 ms.
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a coupling constant a of 3.0. In this case, the map-based
period 1 finding algorithm gives a fixed point of 12.7 ms,
while the pulse control technique results in a stable
period 1 orbit of about 9.5 ms.

C. Comparison to other control techniques

It is useful to compare this control technique to other
control techniques that might be used in a biological sys-
tem in order to determine if it is better, worse, or the
same as the other methods and to show that it is indeed
different. The STPF control method described above was
compared to periodic pacing, in which a periodic pulse
train is used to entrain the system, and demand pacing
[23], where the system is forced to fire if some maximum
interval passes without it firing. For these experiments,
the driving period T for the circuit was set to 1.144 ms,
the driving amplitude A4 was set to 14.0 V, and the cou-
pling constant a was 8.0.

1. Periodic pacing

For the periodic pacing, a large entraining pulse was
necessary. Entrainment was seen for an entraining pulse



period of 5.0 ms, a height of 14.0 V, and a width of 400
us, or four times the size of the driving pulses. The aver-
age power delivered by the controlling circuit to the
FHN circuits during entrainment was about 26 mW. It
was possible to entrain the FHN circuit array to other
pulse periods, but this required even larger entrainment
pulses.

2. Demand pacing

It was possible to drive the circuit array into many
different period 1 and period 2 orbits using demand pac-
ing, but most of these did not correspond to suspected
periodic orbits of the system and were not predictable
without knowing the system dynamics. To produce a
period 1 orbit with a period of 5.76 ms, the controller
delivered an average power of 5.8 mW. There were many
such orbits seen as the control voltage was changed.
Glass and Zeng [23] discuss targeting particular orbits
for demand pacing.

Because the controller prevented any pulses longer
than a certain maximum, it was always possible to get a
series of intervals such as the one in Fig. 11, where the
maximum interval was 5.04 ms. This type of control re-
quired a larger controller signal, however; the power
delivered by the control circuit was 21 mW.

V. CONCLUSIONS

Previous attempts to control systems with pulses have
used poorly characterized or very simple systems. This
work presents an intermediate case, a system that is com-
plex but well defined. It was shown that simple control
techniques can work on higher dimensional deterministic
systems, and the efficiency of different control techniques
was compared. The most efficient control was one that
used control pulses that were not large enough to make
the system fire immediately, here called a STPF tech-
nique. This method worked by modifying the dynamics
of the system near an unstable fixed point, as is suggested
in [1]. The least efficient method was periodic pacing, al-
though periodic pacing will always work for a large
enough entrainment pulse. Demand pacing for this cir-
cuit could be as efficient as STPF control when it in-
teracted with the system dynamics to produce a period 1

I, (ms)

T T T
0 200 400 600

n

FIG. 11. Time series of intervals I, when demand control is
used with the coupled circuit array.
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orbit, but it required more power to generate a time series
with an arbitrary maximum period. The main disadvan-
tage of the STPF technique was that it required more in-
formation about the system and was not as robust as the
other two techniques.

The STPF technique could probably be improved by
using more information about the system. It has been
suggested that it might be better to use more than one
signal from a biological system in order to find fixed
points [2]. It makes sense that a 2D return map is not the
best way to find fixed points and manifolds in a possible
higher dimensional system. The control response could
also be made higher dimensional by applying different
pulses to different parts of the system [5]. While there
are good control techniques for higher dimensional sys-
tems, there are still problems applying them to biological
systems, where the amount of knowledge about the sys-
tem is limited.

APPENDIX: PERIOD 1 DETECTION ALGORITHM

The algorithm for detecting fixed points in this work
was different from the algorithm of Pierson and Moss [3].
In many cases, the system state is seen to linger near the
unstable period one orbit for several cycles. The algo-
rithm described here allows for this possibility.

A one-dimensional time series of intervals I, between
firings of the x variable of oscillator 1 is stored and used
to construct a first return map of (I, _;,I,). These points
are labeled (x,,y,). First, the data are searched for a
point where the absolute value of x, —y, is less than 10%
of the data range. These points may appear in
groups, so the following points are checked to see if
this condition holds. There will be a total J of these

points. The fixed point location is taken as
the average of these points. Next, the numbers
A; are calculated, where A;=abs(x,_,—y,_,),

A,=abs(x, 1=y, —1), A3=abs(X, ;41— Yp+s+1), and
Ay=abs(x, ;42— V,+s+2). For the points before the
fixed point to be moving away from the line of identity
and the points after the fixed point to be moving away,
A;>A, and A;<A,. The points must be moving away at
an increasing rate, so it is required that A;>CA, and
CA; <A, where Cis a constant greater than 1. C is arbi-
trarily set equal to 2.0. For groups of points that satisfy
these conditions, the slopes of the incoming and outgoing
manifolds must be calculated. The slope m of the stable
manifold is taken as the average of the slopes of the lines
connecting the points (x, _,,y,_,) to (x,_;,¥,—1) and
(X, —1s¥Yn—1) to (x,,y,). The slope m, of the unstable
manifold is taken in an analogous fashion. The final re-
quirement is that 0<m;<—1.0 and —1.0<m,. The
negative signs on the slopes also force the candidate fixed
point to be a flip saddle. To qualify as a fixed point, mul-
tiple candidates must be found within 10% of each other
and have values for the unstable manifold slope m,,
within 20% of each other. The stable manifold slopes
were small enough that a small difference in point loca-
tions could produce a large difference in slope, so the
stable manifold slopes were not used to differentiate fixed
points.
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